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Abstract

The last 20 years have seen a wide variety of high-resolution methods that can compute sharp, oscillation-free com-
pressible flows. Here, we combine a complementary set of these methods together in a nonlinear (hybridized) fashion.
Our base method is built on a monotone high-resolution Godunov method, the piece-wise parabolic method (PPM).
PPM is combined with WENO methods, which reduce the damping of extrema. We find that the relative efficiency of
the WENO methods is enhanced by coupling them with the relatively inexpensive Godunov methods. We accomplish
our hybridizations through the use of a bounding principle: the approximation used is bounded by two nonlinearly stable
approximations. The essential aspect of the method is to have high-order accurate approximations bounded by two non-
oscillatory (nonlinearly stable) approximations. The end result is an accuracy-, monotonicity- and extrema-preserving
method. These methods are demonstrated on a variety of flows, with quantitative analysis of the solutions with shocks.
� 2007 Elsevier Inc. All rights reserved.
1. Overview

Early linear differencing methods have been superseded by nonlinear methods using limiters that hybridized
the various first generation methods based on the nature of the local solution. These hybrid schemes com-
prised the initial high-resolution methods, which combined the accuracy of the oscillatory schemes with the
monotonicity and physically significant solutions of the first-order monotone methods. These methods pursue
the goal of exploiting the best of each linear method while avoiding the unfavorable characteristics that also
plague the solutions. A veritable alphabet soup of the methods [19,20] has arisen in the last two decades
including high-resolution Godunov methods (MUSCL [35], PLM [5], PPM [8]), FCT [2], UNO [14], ENO
[14], WENO [18], and TVD [13]. Extending the PPM method will be the focus of this paper although the ori-
ginal PPM method [8,37] has been extended by Woodward [38] using a different approach then the one taken
in this paper, but with similar goals. Each of these methods can be identified as having a different principle
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leading to a different algorithm for achieving high-resolution results. At their core, however, they are all based
on nonlinear hybridizations of several linear methods.

The methods described in this paper constitute a step in this progression by taking the nonlinear methods
and nonlinearly combining or hybridizing them to achieve higher resolution results than the original nonlinear
methods. Included will be a combination of PPM and WENO, relying upon new nonlinear ‘‘limiters’’ to select
which nonlinear principle to follow locally. This approach can be applied to other combinations of methods
such as MUSCL and UNO or PPM and ENO for example. The principle we employ is to assure that approx-
imations used to advance the conservation laws are bounded by nonlinearly stable methods; this assures the
nonlinear stability of the result because the resulting method can be written as a convex combination of non-
linearly stable methods. The accuracy and stability properties of the methods are a by-product of the median
function used to compose the methods [17].

We have studied the connection between method accuracy and error in a preceding paper [12]. In that
paper, we examined the relative computational effort of PLM and fifth-order WENO. There we found that
the computational simplicity of PLM and its relatively high accuracy compared to WENO made it more effi-
cient on the problems examined. WENO, however, outperformed PLM on a per-mesh-cell basis for a problem
with substantial high-frequency structure. Our aim in this work is to provide a means of achieving the best of
each method: the simplicity (efficiency) and accuracy (resolution) of compressible flow structures of PLM com-

bined with the formal accuracy and the resolution of extrema available with WENO.
The success of our new methods will be judged by the solution accuracy they provide relative to computa-

tional effort normalized by comparable existing methods. Quantifying error will provide guidance for subse-
quent development and an assessment of progress. In computing error, one must be cognizant that shock
captured solutions with shocks are demonstrably first-order, at best, in convergence. Majda and Osher [21]
proved that a coupled first-order system of hyperbolic PDEs loses high-order accuracy for all characteristics
emanating from a discontinuity. This result has been confirmed by others in recent years [11,4], and holds even
for linear systems of equations.

The process of quantifying error is based on the error ansatz,
Ep ¼ kS � Akp ¼ Cha þ higher order terms; ð1Þ
where E is the error, S is the numerical solution, A is the true solution, p ¼ ð1; 2; . . . ;1Þ is the norm used, and
h is the mesh size, with the quantities C and a to be determined through mesh refinement. If an analytic solu-
tion, A, is known, solutions on two grids are needed to determine these values. Under this condition the rate of
convergence for the p-norm is simply given by
ap ¼
logðEp;2=Ep;1Þ

logðh2=h1Þ
; ð2Þ
where we assume that the higher number corresponds to a finer grid (h2 < h1, this equation also assumes that
the refinement ratio is equal h2=h1 ¼ h3=h2). If there is no analytic solution, three grids are needed, because the
solution itself must be estimated along with the convergence rate and constant. Without the analytic solution,
the numerical solution should be compared at identical locations (or more properly volumes). In all the cases
presented herein, we have volume averaged the fine grid solutions onto the coarse grid. We believe that this
form of averaging is the most consistent approach for the solution of conservation laws with discontinuous
solutions. For example, if the grid were refined by a factor of two in one dimension, the solutions would
be compared on the coarse grid and the coarsened fine grid solution would be produced by averaging two fine
grid cells to produce a single value on the coarse grid. With these caveats in mind, this leads to a similar for-
mula to the case where the analytical solution is known:
ap ¼
log½kSp;3 � Sp;2kp=kSp;2 � Sp;1kp�

logðh2=h1Þ
; ð3Þ
again, noting that we are assuming that the refinement ratio is constant.
In the following section, we will introduce our methods and describe them in detail. Then we will test the

algorithms on a set of one-dimensional problems. The first of these tests are two linear advection problems.
One contains multiple waveforms in the initial conditions and the other is a single Gaussian pulse. The next
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set of one-dimensional tests are nonlinear and consist of the simple wave evolution [9], Sod’s (Sod) shock tube
[31] problem which both have analytic solutions for comparison. The next set of one-dimensional nonlinear
tests, the Woodward and Colella (Blast) blast wave problem [36] and the Shu-Osher (SO) problem [30], require
a high-resolution fiducial solution to be constructed for determining accuracy since there is no analytic solution.
We use a mesh eight times finer than any of the test problem meshes for generating the fiducial solution. The SO
problem is run in with two variations. One is examined at early time when the post-shock flow consists of four
smooth compressed waves and the other is examined at late time with 16 such waves after they have steepened
into a train of N-waves. For a two-dimensional test we use the Mach 10 double Mach reflection. Finally, we
examine the performance of the new method on the three-dimensional Taylor–Green vortex problem [3,29].

2. Extrema, accuracy and monotonicity-preserving methods

In this work, we consider the solution to the compressible Euler equations in one-, two- or three-dimen-
sions. The equations are written in conservation form:
Ut þr � FðUÞ ¼ 0; ð4Þ

where U ¼ ðq;m;EÞT. We will restrict our attention to the ideal gas equation of state, p ¼ ðc� 1Þqe. In the
above, q is the density, m is the momentum, p is the pressure, and E is the total energy,
E ¼ qeþ 1=2ðm �mÞ=q. The flux vector is FðUÞ ¼ ðm;mm=qþ pd;mðE þ pÞ=qÞT.

We also use the Euler equations in primitive form:
Vt þ Ap;xðVÞ
oV

ox
þ Ap;yðVÞ

oV

oy
þ Ap;zðVÞ

oV

oz
¼ 0; ð5Þ
with V ¼ ðq; u; qe; pÞT. In one dimension, Ap ¼ M�1Ac, Ac ¼ oFxðUÞ=oU, M ¼ oU=oV, with two and three
dimensions following similarly. The vector of primitive variables is redundant (p and qe both describe the lin-
earized evolution of energy). This form is useful in defining the numerical solutions [7,24]. Despite our use of
the full multi-dimensional equations, we use one-dimensional algorithms, with which multi-dimensional inte-
gration methods are constructed through the use of operator splitting.

The details of the implementation matter a great deal in contributing to the accuracy of the method. Among
the most important of these is the use of characteristic variables for the basic finite difference approximations.
These are constructed through an eigenvalue decomposition of the flux Jacobian in each zone. It takes the fol-
lowing form for the mth characteristic variable in the jth zone:
wk ¼ LðVjÞVk: ð6Þ

Once one dispenses with strictly monotonicity-preserving methods the use of characteristic variables is helpful
– if not essential for very difficult problems involving strong shocks.

We use the characteristic decomposition defined in terms of the primitive variables. The primitive variable
form provides simpler characteristic variables, w ¼ LV, defined by the eigenvalue decomposition of Ap ¼
RpKLp. The characteristic decomposition in primitive variables is equivalent to the conservative variable
decomposition through a linear transformation [17]. The conservative Jacobian can be recovered with the con-
servative right-eigenvectors, Ac ¼ RcKLp, the eigenvalues, and the primitive characteristic variables.

In the case of the present algorithm, we use the following characteristic decomposition with six character-
istic variables matching our six primitive variables. These characteristics form a vector as follows:
w ¼ LV ¼

qkq
�1
j � pkðqcÞ�1

j

vkc�1
j

wkc�1
j

qkekðqc2Þ�1
j � pkðpj þ qjejÞðqc2Þ�2

j

1=2ðpkðqc2Þ�1
j � ukc�1

j Þ
1=2pkðqc2Þ�1

j þ ukc�1
j

2
666666666664

3
777777777775

;
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where c is the sound speed, v and w are the transverse velocities, k is any zone in the stencil, and j is cell being
reconstructed. Once any operation is conducted on these characteristic variables, the primitive variables can be
recovered by post-multiplying by the right eigenvectors,
R ¼

qj 0 0 0 qj qj

0 0 0 0 �cj cj

0 cj 0 0 0 0

0 0 cj 0 0 0

0 0 0 ðqc2Þj pj þ qjej pj þ qjej

0 0 0 0 ðqc2Þj ðqc2Þj

2
6666666664

3
7777777775

:

This returns a vector of six primitive variables ðq; u; v;w; qe; pÞT.
Next, we review the basic design for a Godunov-type approach for solving the Euler equations.

1. Compute the polynomial interpolation in a cell and employ nonlinear stability enhancing constraints,
VnðxÞ ¼ PðhÞ; ð7Þ
where

PðhÞ ¼ P0 þ P1hþ P2h
2 þ . . . ; h ¼ x� �x

Dx
:

2. Apply time-accurate differencing. The details of the PPM interpolation will be discussed below in Algo-
rithm 2.1.

3. Solve the Riemann problem at the cell interfaces
FðVÞnþ1=2 ¼ RðV�;VþÞ; ð8Þ
where Rð; Þ is the (approximate) Riemann solver given these primitive variable values. The Riemann solver
is an essential aspect of the resulting solution fidelity. The chief aspect that directly impacts solution fidelity
is the approximation of rarefactions. Recall that a rarefaction is a continuous and adiabatic transition. The
vast majority of Riemann solvers simply approximate a rarefaction as a jump discontinuity either directly
or as a necessary side effect. In some cases, this simplification can significantly degrade solution accuracy.
By approximating the rarefaction as continuous in the Riemann solution, one can decrease the error in
computing rarefaction solutions in simple shock tubes by more than 50%. Furthermore, this change in
approximation also removes sonic point ‘‘glitches’’ (expansion shocks) [27].

4. Advance the conservation laws (and conserved variables) using the Riemann fluxes. In a one-dimensional
sweep, this step is simple,
Unþ1
j ¼ Un

j �
Dt
Dx
ðFjþ1=2 � Fj�1=2Þ:
5. Update the constitutive relations and prepare for the next time step
pnþ1
j ¼ p qnþ1

j ; enþ1
j

� �
: ð9Þ
These steps comprise a single dimensional sweep in what can be composited into a multi-dimensional method
through Strang splitting [32], where the order of the sweeps can be alternated to give second-order accuracy
(linearly). For example, a two-dimensional solution would composite an x-direction sweep,
Unþ1
i;j ¼ Un

i;j �
Dt
Dx
ðFiþ1=2;j � Fi�1=2;jÞ;
followed by a y-direction sweep,
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Unþ1
i;j ¼ Un

i;j �
Dt
Dy
ðFi;jþ1=2 � Fi;j�1=2Þ:
This would form the algorithm to complete a single time step. Strang splitting would then invert the order in
the next time step to a y-direction sweep followed by an x-direction sweep.

In examining typical computational results, several questions arise regarding what restricts the performance
of the Godunov-type methods. The most severe loss of accuracy comes when the limiter reduces the scheme to
first-order at extrema. We take the approach of Huynh [17] and Suresh [33] a step further by clarifying the
various limiters, extending the order, and unifying the edge value limiting in keeping with Huynh’s approach
(less like that of Suresh and Huynh).

Algorithm 2. PPM godunov-type integrator

1. Begin with cell-centered conserved variables, Un
j .

2. Convert the conserved variables Un
j to primitive variables Vn

j , in cell j at time-step n.
3. Convert to local characteristic variables sufficient for the width of the computational stencil in cell j,

wk ¼ LðVjÞVk, for k ¼ j� S to k ¼ jþ S where S is the width of the difference stencil for cell j.
4. Select an algorithm to use for cell reconstruction and time centering in a cell from Algorithm 2.1 (PPM).
5. Convert cell-edged, time-centered variables, w

nþ1=2
j�1=2;�, to primitive variables, V

nþ1=2
j�1=2;�. Here, the subscript

‘‘�’’ (‘‘+’’) denotes the value at the specified edge when approached from the right (left).
6. Compute cell-edged, time-centered fluxes using a Riemann solver to produce a single-valued flux from the

multivalued reconstruction, FðVnþ1=2
jþ1=2 Þ, where V

nþ1=2
jþ1=2 ¼ RiemannðVnþ1=2

jþ1=2;�;V
nþ1=2
jþ1=2;þÞ.

7. Update cell-centered, conserved variables to the new time-level, nþ 1, using fluxes, Unþ1
j ¼

Un
j � ðDt=DxÞ½FðVnþ1=2

jþ1=2 Þ � FðVnþ1=2
j�1=2 Þ�.

8. Evaluate constitutive relations using the new time conserved variables.
9. Return to 1.

When implementing multi-dimensional integrators for the Godunov-type methods we will use Strang split-
ting in this paper. Algorithm 1 is applied direction-by-direction to build two- and three-dimensional methods.
If Algorithm 1 is represented symbolically as the operator GU with a subscript to denote the direction, the
two-dimensional integrator for two time-steps takes the form Unþ2 ¼ GxGyGyGxU

n. In three dimensions the
form using Strang splitting is Unþ2 ¼ GxGyGzGzGyGxU

n.
Nothing precludes extending the basic methods described here to an unsplit integration method as

described in a number of papers. A good example of the methodology was introduced by Colella [6] and
recently extended by Miller and Colella [22,23].

2.1. Piece-wise parabolic method (PPM)

The same ideas can be used to construct a third-order piece-wise parabolic method. The parabola is deter-
mined by three values: wj;m, the integral average of the mth characteristic variable w in cell j, and the edge val-
ues, wj�1=2;m, which are approximated by a linear combination of neighboring zone data. The parabolic
reconstruction can be described in a brief sequence of steps in which one can vary the order of accuracy
for the edge values and the method used for nonlinear stability.

Algorithm 2.1. Piece-wise Parabolic Reconstruction

1. The polynomial is piece-wise parabolic, wðxÞ ¼ PjðhÞ; P ðhÞ ¼ P0 þ P1hþ P2h
2; P0 ¼ 3wj=2�

ðwj�1=2 þ wjþ1=2Þ=4; P1 ¼ wjþ1=2 � wj�1=2. P2 ¼ 3ðwjþ1=2 � 2wj þ wj�1=2Þ.
2. Choose the initial value for the edge values, wj�1=2. Algorithms 2.2.1, 2.2.2, 2.2.3, or Algorithm 2.2.4 can be

used. If Algorithm 2.2.3 is used, the method is equivalent to a characteristic variable version of the classic
PPM algorithm.

3. Choose a method to insure nonlinear stability: either a monotonicity Algorithm 2.1.1, or an accurate mono-
tonicity- and extrema-preserving Algorithm 2.1.2. If a WENO initial edge value is chosen (Algorithm 2.2.4),
this step can be avoided because this edge value is non-oscillatory.
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4. The piece-wise linear polynomial provides a time-centered value of w
nþ1=2
j�1=2;� ¼ P0 þ P1ð�1=2� m=2Þþ

P2ð1=4� m=2þ m2=3Þ, where m ¼ Dtk=Dx is the Courant number for the characteristic being reconstructed.
For PPM, we remove the linear, P1, and quadratic terms, P2, from the expansion. The filter can be defined

by bþ ¼ ðsignðmÞ þ 1Þ=2 and b� ¼ ð1� signðmÞÞ=2. w
nþ1=2
j�1=2;� ¼ wj þ b�ðP0 þ P1ð�1=2� m=2Þ þ P2ð1=4�

m=2þ m2=3Þ � wjÞ.
2.1.1. cPPM

The algorithm used to define the monotonicity of a piece-wise parabolic reconstruction can be written com-
pactly. For PPM, monotonicity is assured if
wj�1=2 2 ½wj;wj�1�
and
wj�1=2 2 ½wj; 3wj � 2wj�1=2�:
We use a median function to provide appropriately bounded values satisfying the conditions for monotonicity.
The median function can be defined using a minmod function, where
minmodða; bÞ ¼ 1=2ðsignðaÞ þ signðbÞÞminðjak; jbkÞ;

and
medianða; b; cÞ ¼ aþminmodðb� a; c� aÞ:

An important property is that the median function’s result is independent of the order of the arguments,
medianða; b; cÞ ¼ medianðc; a; bÞ ¼ medianðb; c; aÞ.

Algorithm 2.1.1. Piece-wise Parabolic Monotonicity

1. First, compute the following relations to bound the edge values by adjacent data,
wj�1=2 :¼ medianðwj;wj�1=2;wj�1Þ:
2. Finish the algorithm through bounding the edge values accounting for transport effects,
wj�1=2 :¼ medianðwj;wj�1=2; 3wj � 2wj�1=2Þ:
This algorithm has the cost of four applications of the median function per zone.

2.1.2. xsPPM

Algorithm 2.1.2. Piece-wise Parabolic Accurate Monotonicity- and Extrema-Preserving

1. Check the monotonicity of the high-order edge values.
2. Compute the following relations to bound edge values with adjacent data,
wj�1=2 :¼ medianðwj;wj�1=2;wj�1Þ:
3. Finish the algorithm through bounding the edge values accounting for transport effects,
w�j�1=2 ¼ medianðwj;wj�1=2; 3wj � 2wj�1=2Þ:
4. If both the high-order edge values are unmodified, then the algorithm is finished; return. This is imple-
mented using a tolerance, such as ðw�j�1=2;m � wj�1=2;mÞ2 < 10�12. These values are checked component-by-
component. The edge values are a vector, wj�1=2 ¼ ðwj�1=2;1;wj�1=2;2; . . . ;wj�1=2;MÞT. Should either edge be
modified, however, return to the initial edge values wj�1=2;m and use the following algorithm.
(a) Compute a fifth-order WENO edge value wj�1=2;m;� using Algorithm 2.2.4.
(b) If the monotone limiter indicates that there is a local extremum ðw�j�1=2;m ¼ wjÞ,
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i. Bound the WENO estimate with the local data, Algorithm 2.2.4
wj�1=2;m;� ¼ medianðwj;m;wj�1=2;m;�;wj�1=2;mÞ:
ii. Compute the monotone WENO values
w�j�1=2;m ¼ medianðwj;m;wj�1=2;m;�;wj�1;mÞ;
w�j�1=2;m :¼ medianðwj;m; 3wj;m � 2w�j�1=2;m;wj�1=2;m;�Þ:
iii. Bound the final value by the monotone WENO and WENO values (and the original high-order
value),
wj�1=2;m ¼ medianðw�j�1=2;m;wj�1=2;m;�;wj�1=2;mÞ:

(c) Otherwise the limiter indicates that the region is monotone and too steep to be approximated with the
original high-order value.

i. Compute steepened high-order values, w�j�1=2;m, using Algorithm 2.2.3.
ii. The steepened value is not high-order accurate, so bring it to high-order using the median func-

tion and the original high-order and WENO values,
w�j�1=2;m ¼ medianðw�j�1=2;m;wj�1=2;m;�;wj�1=2;mÞ:
iii. Compute monotone steepened high-order values,
w�j�1=2;m :¼ medianðwj;m;w�j�1=2;m;wj�1;mÞ;
w�j�1=2;m :¼ medianðwj;m; 3wj;m � 2w�j�1=2;m;w

�
j�1=2;mÞ:
iv. Bound the final value using the monotone steepened high-order values, the WENO result, and
the original high-order values,
wj�1=2;m ¼ medianðw�j�1=2;m;wj�1=2;m;�;wj�1=2;mÞ:
serving value. This will produce an approximation that is correct to the spatial order of the high-order or

The final edge values are the median of a high-order approximation, ENO/WENO, and a monotoncity-pre-

ENO/WENO edge value, whichever is lower.

2.2. PPM edge variables

The formula for defining the edge variables will be defined as an algorithmic choice so that the approach
can be referenced appropriately for our more complex methods. The simplest basic choice is a standard
fourth-order centered edge value.

Algorithm 2.2.1. Fourth-order centered edge value
wjþ1=2 ¼
7ðwj þ wjþ1Þ � ðwj�1 þ wjþ2Þ

12
: ð10Þ
We have found that replacing the fourth-order differencing used in the original PPM can be improved by
moving to higher order approximations such as a sixth-order or seventh-order edge value, leading to

Algorithm 2.2.2. Seventh-order centered edge value
wjþ1=2 ¼ �
3

420
wj�3 þ

25

420
wj�2 �

101

420
wj�1 þ

319

420
wj þ

214

420
wjþ1 �

38

420
wjþ2 þ

4

420
wjþ3:
The original PPM method modifies the fourth-order edge value so that it is guaranteed to lie between the
local point values. These modifications allow the resulting reconstruction to be steeper where the solution itself
is steep (and under-resolved). We describe this method below and a modified version of this approach that
produces a sixth-order edge value.
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Algorithm 2.2.3. Fourth-order steepened edge value

1. Compute cell-centered monotone slopes
Sj ¼ 1=2ðwjþ1 � wj�1Þ;
SM

j ¼ 2medianð0; ðwjþ1 � wjÞ; ðwj � wj�1ÞÞ;
Sj :¼ medianð0;Sj;S

M
j Þ:

ð11Þ
2. Combine these slopes with the simple average at the cell-edge,
wjþ1=2 ¼ 1=2ðwj þ wjþ1Þ �
1

6
ðSjþ1 � SjÞ: ð12Þ
The WENO methods can be used for general reconstruction of variables, not only for constructing fluxes.
They can also be used to provide states to input into a Riemann solution as a step in a finite volume methods.
As noted earlier, the principal approximation in WENO methods is the use of a weighted combination of high-
order stencils based on local smoothness, to produce a higher order stencil.

Algorithm 2.2.4. Fifth-order WENO edge value

1. Compute the third-order stencils
wjþ1=2;1 ¼ ð11wj � 7wj�1 þ 2wj�2Þ=6;

wjþ1=2;2 ¼ ð2wjþ1 þ 5wj � wj�1Þ=6;

wjþ1=2;3 ¼ ð�wjþ2 þ 5wjþ1 þ 2wjÞ=6:
2. Compute the smoothness indicators
ISjþ1=2;1 ¼
13

12
ðwj � 2wj�1 þ wj�2Þ2 þ

1

4
ð3wj � 4wj�1 þ wj�2Þ2;

ISjþ1=2;2 ¼
13

12
ðwjþ1 � 2wj þ wj�1Þ2 þ

1

4
ðwjþ1 � wj�1Þ2;

ISjþ1=2;3 ¼
13

12
ðwjþ2 � 2wjþ1 þ wjÞ2 þ

1

4
ðwjþ2 � 4wjþ1 þ 3wjÞ2:
3. Compute the weights
ajþ1=2;1 ¼ 0:1=ðISjþ1=2;1Þ; ajþ1=2;2 ¼ 0:6=ðISjþ1=2;2Þ; ajþ1=2;3 ¼ 0:3=ðISjþ1=2;3Þ;
where d ¼ 1� 10�40. Finally, normalize the weights using xjþ1=2;3 ¼ ajþ1=2;k=

P
a.

4. Compute the mapping weights [15] to improve accuracy. First set
ajþ1=2;k :¼ ajþ1=2;kð�xk þ ð�xkÞÞ2 � 3�xkajþ1=2;k þ ðajþ1=2;kÞ2

ð�xkÞ2 þ ajþ1=2;kð1� 2�xkÞ
;

where �xk is the optimal weight that produces a fifth-order approximation when combined with the other
third-order edge values (�x1 ¼ 1=10, �x2 ¼ 6=10 and �x3 ¼ 3=10). Finally, normalize the weights again using
xjþ1=2;k ¼ ajþ1=2;k=

P
a.

5. Compute the final edge values using the weights
wjþ1=2 ¼ xjþ1=2;1wjþ1=2;1 þ xjþ1=2;2wjþ1=2;3 þ xjþ1=2;3wjþ1=2;3: ð13Þ
3. Results for the new methods

We have implemented these methods in the same manner utilizing as much common code as possible. All of
the methods use similar data structures. We test these values with particular attention on both numerical error
and computational effort.
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The method that is closest to the original PPM method (using the same basic differencing for the scalar
wave equation) is denoted as mPPM4s, for a monotone PPM with 4th-order steepened edge values. This will
be used as our baseline scheme. It will be compared to the new xsPPM7 method introduced in the previous
section.

3.1. One-dimensional results

3.1.1. Scalar wave equation

It is useful to study results for the simple scalar wave equation, U t þ U x ¼ 0, where order-of-accuracy can
be experimentally determined. In addition, the basic properties of the method can be examined without the
complications of nonlinear phenomena. We examine two basic results: a Gaussian pulse (to determine the
design order-of-accuracy and verify claims about the nature of error associated with the new methods),
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Fig. 1. The solution using the mPPM4s method for one period, t ¼ 2 (top) and 10 periods, t ¼ 20 (bottom). Error at t ¼ 2, 1:64� 10�2.
Error at t ¼ 20, 3:10� 10�2. CPU time at t ¼ 20 is 7.69 s.
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and an advected profile containing four wave-forms. Our first problem will consist of a Gaussian, square
wave, triangular wave, and a half-circle. The results provide substantial qualitative evidence of the character
of solutions that can be expected with our methods.
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Fig. 2. The solution using the xsPPM7 method for one period, t ¼ 2 (top) and 10 periods, t ¼ 20 (bottom). Error at t ¼ 2, 1:15� 10�2.
Error at t ¼ 20, 1:84� 10�2. CPU time at t ¼ 20 is 8.30 s.

Table 1
The errors in L1, L2 and L1 norms for the advection of a Gaussian pulse one period on a grid using a Courant number of 0.01

Method Grid L1 L1 rate L2 L2 rate L1 L1 rate

mPPM4s 16 9:82� 10�3 1:39� 10�2 2:96� 10�2

32 2:82� 10�3 1.80 4:51� 10�3 1.62 1:27� 10�2 1.22
64 7:35� 10�4 1.94 1:29� 10�3 1.81 3:96� 10�3 1.68

xsPPM7 16 9:09� 10�4 1:21� 10�3 2:73� 10�3

32 2:00� 10�5 5.51 2:84� 10�5 5.41 9:01� 10�5 4.92
64 2:40� 10�6 3.06 3:62� 10�6 2.97 1:28� 10�5 2.82
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The general character of the algorithms can be seen through the advection of a waveform with sufficient
diversity to stress different aspects of the methods. We choose a waveform used in several other papers [33,10]:
Fig. 3.
xsPPM
the de
fashion
uðxÞ ¼

exp½� log 2ðxþ 0:7Þ2=0:0009�; x 2 ½�0:8;�0:6�;
1 x 2 ½�0:4;�0:2�;
1� j10ðx� 0:1Þj; x 2 ½0; 0:2�;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 100ðx� 0:5Þ2
q

; x 2 ½0:4; 0:6�;
0; otherwise:

8>>>>>>><
>>>>>>>:
The boundary conditions are periodic. The advection of the wave form is given in Figs. 1 and 2 each on a grid
of 200 cells as used in the aforementioned references.

In each figure, the exact wave form is given by a solid line, the dot-dashed line shows the error, and the
numerical method’s solution is given by the symbols. In both figures the upper plot is at time t ¼ 2 after
one period and the lower plot is at time, t ¼ 20, after 10 periods. The figure caption gives the L1 error
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7 methods. The lower figure shows the relative error in the power spectrum using these two methods. The xsPPM7 scheme shows

viation from the exact solution to be smooth and generally monotonic while the mPPM4s scheme deviates in a quasi-oscillatory
.
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associated with the solution at these two time. The CPU time used for each full calculation after 10 periods
is also displayed. Note that each calculation has an overhead of 0.257 s not related to the specifics of the
method.

Our baseline for comparison is shown in Fig. 1 with the mPPM4s method. This method does particularly
well in computing the square wave, but the monotonicity algorithm significantly clips the extrema. By using
Table 2
The errors in L1, L2 and L1 norms for the acoustic wave-breaking problem using two grids

Method Grid L1 L1 rate L2 L2 rate L1 L1 rate

mPPM4s 32 7:44� 10�7 1:21� 10�6 3:79� 10�6

64 1:08� 10�7 2.78 2:06� 10�7 2.55 8:23� 10�7 2.20

xsPPM7 32 2:89� 10�7 7:40� 10�7 3:04� 10�6

64 4:18� 10�8 2.79 1:20� 10�7 2.62 7:62� 10�7 1.99
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Fig. 4. A comparison of the computed and resolved solutions for the density in the interacting blast wave problem at t ¼ 0:038 with 400
cells.
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the ‘xs’ limiter we combine the positive effects of these algorithm modifications and recover low error, lack of
clipping, and good square wave resolution, as shown in Fig. 2. These solutions are nominally more expensive
than the original PPM method, but produce notably smaller errors.

Next, we evaluate the experimental order-of-accuracy for our methods. We use a Gaussian pulse,
1
4
þ 1

4
expð�30ðx� 1=2Þ2Þ, advected at a small Courant number, 0.01. This focuses the error on the spatial

contribution by making the time error both small and nearly fixed in magnitude. Our results are shown
in Table 1. The older monotone algorithm suffers a significant loss of accuracy and order-of-accuracy
due to the nature of the enforcement of monotonicity. We see that the xsPPM method removes the loss
of accuracy associated with the monotone limiting in the mPPM method and produces second-order accu-
racy in all norms measured. The xsPPM method produces high-order convergence presumably due to the
melding of seventh-order base differencing with fifth-order WENO differencing at extrema, or significant
under-resolution. These elements lead to a better convergence rate and significantly lower error as compared
to the monotone method.

3.1.2. Compressible Euler equations

In order to study the behavior of the methods on smooth nonlinear flows that become shocked, we examine
the acoustic wave breaking problem introduced by Cook and Cabot [9]. We compare methods at the same
point as Cook and Cabot, 3/4 of the time at which the wave breaks and a shock forms. At that time an analytic
solution is available for comparison. The spectral result is shown in Fig. 3. The new xsPPM method provides
notably smoother behavior at higher wavenumbers. Furthermore, the deviation from the exact solution is
smooth and generally monotonic. The mPPM4s method deviates from the analytic solution spectra in an
quasi-oscillatory fashion. In Table 2, the errors for both methods are summarized. The convergence rates
are very similar independent of the error norm. The magnitude of the errors are also similar for all norms con-
sidered differing at most by a factor of two.
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Fig. 5. A comparison of the errors for the density in the interacting blast wave problem at t ¼ 0:038.

Table 3
Summary of density and pressure errors for the blast problem with 800 cells

Method Density error Pressure error Cost

mPPM4s 3:42� 10�2 7:83� 10�1 1.00
xsPPM7 2:94� 10�2 6:38� 10�1 1.04
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We next test our methods on problems with stronger nonlinearities. The first one is a simple self-similar
shock tube problem, Sod’s (Sod) shock tube [31] which has an analytic solution for comparison. On Sod
we find that the two algorithms produce results that are virtually indistinguishable. The next two tests require
a high-resolution fiducial solution for comparison and determining errors. The first of these is the blast wave
problem of Woodward and Colella (Blast), which features very strong shocks that interact to form intricate
structures [36]. The second is the Shu-Osher problem (SO) featuring compressed smooth waves that steepen
into a train of N-waves [30]. We examine two variants of this problem, one at early time (with four smooth
compressed waves in the post-shock region), and one at late time (with 16 such waves). For both the blast and
SO problems we construct fiducial solutions using highly resolved computed results with eight times the mesh
cells as the finest solution we are testing. This procedure for using a higher resolution fiducial solution was the
same one used in [12] to study the accuracy of cPLM4 and WENO5.
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Fig. 6. A comparison of the computed and resolved solutions for the density in the Shu-Osher problem at t ¼ 1:8 with 1600 cells.
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Table 4
Summary of density and pressure errors for the Shu-Osher problem with 3200 cells.

Method Density error Pressure error Cost

mPPM4s 6:92� 10�3 1:32� 10�2 1.00
xsPPM7 2:90� 10�3 4:53� 10�3 1.02

W.J. Rider et al. / Journal of Computational Physics 225 (2007) 1827–1848 1841
The results for interacting blast wave problem are shown in Figs. 4 and 5 and Table 3. The solutions shown
in Fig. 4 show that the xsPPM7 method reproduces extrema with less clipping than mPPM4s at the dominant
peak near x=t ¼ 0:78. This is confirmed by the error comparison shown in Fig. 5. The pressure error improve-
ment is somewhat larger than the density improvement with xsPPM7 as Table 3 shows. From Table 3, the
errors overall are similar with a low (4%) increase in computational cost.

The results for Shu-Osher’s problem are shown in Figs. 6 and 7 and Table 4. Here, the lack of damping of
extrema by xsPPM7 produces errors that are nearly two and a-half times smaller than the corresponding
errors with mPPM4s. Table 4 shows the numerical comparison of error magnitudes. This improvement is
accomplished with a very modest increase in CPU time (2%). Unlike Sod’s shock tube or the interacting blast
wave problem, where the two algorithms performed very similarly, the differences in the solution for this prob-
lem are more evident as shown in Fig. 6. The improvement in solution is confirmed by examining Fig. 7, which
compares the errors.

3.2. Two-dimensional results

We now examine the performance of the methods on a complicated two-dimensional flow. The primary
features of this flow make comparisons difficult. The first is the fact that we are computing solutions to the
Euler equations, i.e. ignore physical viscosity. Hence, under grid refinement we will generate more and more
fine scale structure since physical regularization provided by physical dissipation is being neglected. This flow
also is dominated by slip lines emanating from shock triple points. The Kelvin–Helmhotz instability (shear
instability) will also manifest similar grid dependent fine scale structure. Generally we refer to this flow, with-
out physical dissipation to be ill-posed. Another way to view the generation of additional instabilities (primar-
ily shear instabilities) under grid refinement is that it is the mesh spacing that is tripping the shear layer and
forcing vortical roll-up. Decreasing the grid spacing is tantamount to increasing the Strouhal number thereby
generating smaller scale vortical structures. Therefore, in the absence of physical regularization, more and
more ‘‘detail’’ will be revealed under mesh refinement. This effect precludes the point-wise convergence studies
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undertaken in one-dimension. We must, for this problem rely, unfortunately, on more general comparisons as
the grid is refined.

3.2.1. Mach 10 shock reflection
We begin by employing the standard Mach 10 shock reflection problem introduced by Woodward and

Colella [36]. The problem features a Mach 10 shock in a c ¼ 1:4 gas reflecting from a 60� wedge. The problem
is setup in the manner described in [36] (summarized by Sanders and Weiser [28]) with one key difference. The
exact motion of the Mach 10 shock is prescribed along the upper boundary of the domain. We do the same
except the shock transition is ‘‘smeared’’ over three zones in our implementation using a linear interpolation.
The boundary conditions treated in this manner better match the numerical shock transition layer that devel-
ops with any shock capturing method.

The problem develops a complex Mach reflection with a triple point that features an unstable shear layer.
The resulting wall jet is one of the principal distinguishing aspects of the flow. The wall jet is located behind
the leading shock wave along the lower boundary of the flow-field and the vortex is associated with the nearby
local density minimum, which is identified by the tight density contours along the lower right boundary in the
following figures. The density fields mPPM4s and xsPPM7 are given in Figs. 8 and 9, respectively. We note
that our results appear to have a slight issue with the ‘‘carbuncle’’ instability [26]. While not fully developed
Fig. 8. A density contour plot of a mesh refinement sequence for the mPPM4s for the Mach reflection problem. The key feature to study is
the triple point and Mach stem at the right hand side of the plot. The top plot uses a 240� 60 grid, the middle plot 480� 120 and the
bottom plot is 960� 240. The 60 density contours are chosen with a minimum of 1.5, a maximum of 25.1 with a spacing of 0.4.



Fig. 9. A density contour plot of a mesh refinement sequence for the xsPPM7 for the Mach reflection problem. The key feature to study is
the triple point and Mach stem at the right hand side of the plot. The top plot uses a 240� 60 grid, the middle plot 480� 120 and the
bottom plot is 960� 240. The 60 density contours are chosen with a minimum of 1.5, a maximum of 25.1 with a spacing of 0.4.
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there is evidence that the instability is developing albeit at a low intensity. This problem could be eliminated
through the use of a multi-dimensional artificial viscosity as suggested with the original PPM algorithm
[8,6,24].

It is the strength of the main vortex in the wall jet that we examine more closely to ascertain the fidelity of
our methods. The problem is solved on a domain of x 2 ½0; 4� and y 2 ½0; 1� to a time of 0.2, when all results are
displayed. Visually, the xsPPM7 method shows enhanced resolution when compared with the monotonicity-
preserving version of PPM. This conclusion is enhanced by the examination of the refinement sequence in
Fig. 10 that shows a closeup of the triple point and the shear layer. The usual character that is related to
the resolution is the degree of instability, which is substantially greater with the xsPPM7 method.

The relative degree of instability in the wall jet shear layer is used to assess method fidelity. A greater level
of instability implies less numerical dissipation present in a method; this implies greater numerical accuracy.
This reasoning follows from the proviso that the lower dissipation inhibits any unphysical structures from
developing while allowing more vigorous shear instability.

In keeping with the theme of quantifying errors while recognizing the issues stated at the beginning of this
section, we choose a different approach to examine the fidelity of our methods (although our conclusions
would not change under a more traditional examination). Finally, we compare the minimum density and pres-



Fig. 108 A mesh refinement sequence for both methods for the Mach reflection problem with a closeup on the triple point and shear layer.
sure at the main vortex core in the shear layer using each method. We examine this in Fig. 11. The xsPPM7
method produces the results of the mPPM4s method with less resolution. This is another indication of the
higher resolution of the new methods.

3.3. Three-dimensional results: Taylor–Green vortex

In order to examine the impact of these new methods in three dimensions, we use the Taylor–Green vortex
problem [3,29]. Our setup is identical to that described in [29], producing a low-Mach number (u=c 	 0:10).
The initial conditions are defined as follows:
The left column shows the mPPM4s method and the right column shows the xsPPM7 method. The key feature to study is the triple point

and Mach stem at the right hand side of the plot. The top plots uses a 240

�60 grid, the middle plots 480

�120 and the bottom plots is960

�240. The 60 density contours are chosen with a minimum of 185, a maximum of 2501 with a spacing of 084.1844W.J. Rider et al. / Journal of Computational Physics 225 (2007) 1827–1848
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Fig. 11. A comparison of the mesh refinement for the double Mach reflection of the density and pressure minimum in the vortex rollup.
The plots show the enhanced resolution of the xsPPM7 method as compared with the mPPM4s method.

W.J. Rider et al. / Journal of Computational Physics 225 (2007) 1827–1848 1845
qðx; y; xÞ ¼ 1;

uðx; y; zÞ ¼ sinðxÞ cosðyÞ cosðzÞ;
vðx; y; zÞ ¼ � cosðxÞ sinðyÞ cosðzÞ;
wðx; y; zÞ ¼ 0;

pðx; y; zÞ ¼ 100þ 1

16
½2þ cosð2zÞ�½cosð2xÞ þ cosð2yÞ � 2�:
The flow is analytic at early times, but indications are that the flow may form a singularity at t 	 5:2. This
question is still open despite intense research over the past 30 years.

We show results at two times, ‘‘early’’ when the analytic accuracy of the flow solver can be meaningfully
evaluated and compared, and ‘‘late’’ when the behavior of the method in the presence of nonlinearities is clear.
Our chosen early time is t ¼ 2, well before any singularity would form. In order to quantify the behavior of the
methods, one can look at the evolution of kinetic energy. A more reliable metric for compressible flow is the



Table 5
The total kinetic energy loss at t ¼ 2 in the Taylor–Green problem

Grid mPPM4s xsPPM7

16 · 16 · 16 6.48E � 03 3.00E � 03
32 · 32 · 32 7.44E � 04 5.58E � 04
64 · 64 · 64 1.10E � 04 1.05E � 04

Table 6
The total entropy gain at t ¼ 2 in the Taylor-Green problem

Grid mPPM4s xsPPM7

16 · 16 · 16 2.58E � 03 1.19E � 03
32 · 32 · 32 2.85E � 04 2.23E � 04
64 · 64 · 64 5.34E � 05 5.15E � 05
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entropy, which is well defined and should be a monotonically increasing function of time. We examine the
performance of several methods on grids of 323 and 643 using the quantities of total integrated kinetic energy,
1=2qjuj2, entropy, p=qc, and entrophy (vorticity squared), 1=2jxj2.

We document the quantitative analyses of this problem in Tables 5 and 6. We find that the new method
produces lower errors at the coarser resolutions by almost a factor of two. At the highest resolution consid-
ered, the errors are nearly the same with the xsPPM7 being about 5% lower. Additionally, if one desires a solu-
tion of equal accuracy, then the new methods are more efficient.

4. Concluding remarks

The new methods described here are both efficient and economical according to these considerations. This
can lead to significant gains in efficiency in three dimensions (two orders of magnitude over classical Godunov
methods and three orders over WENO methods). Such improvements suggest that one might reasonably
undertake some calculations that would be prohibitively expensive by other methods. Alternatively, these
new methods can make calculations more economical to pursue given a fixed level of solution quality.

Upon examining the literature we find that these methods are not entirely new. The first example of this
approach is found in Huynh’s uniformly second-order Godunov method where MUSCL and UNO are com-
bined [17]. Later, Suresh and Huynh applied similar principles to edge-centered variables in [33]; with these
methods they coined the term ‘‘accuracy- and monotonicity-preserving’’ methods (AMP). The same principles
have been employed to one-step time integration algorithms by Daru and Tenaud [10]. The AMP approach
was employed by Balsara and Shu for very high-order WENO methods in [1] as MPWENO. Also, Shu has
applied WENO schemes as a limiter for discontinuous Galerkin methods [25]. More recently, the approach
by Hill and Pullin of combining WENO methods selectively with centered differencing is similar to these meth-
ods [16]. Finally, Tang and Baeder [34] provide design principles for a piece-wise parabolic method with
enhanced accuracy for use in vorticity-dominated flows.

The important concept is to employ the most appropriate differencing stencil for the local character of the
flow, using monotonicity as the fundamental trigger for a more careful consideration of differencing options.
In particular we have directly addressed a standard shortcoming of Godunov methods noted in [12] and else-
where that extrema in solutions are clipped, the new methods do not have this character. In closing, we have
presented a methodology that can employ different fundamental differencing concepts with relative ease with-
out a dramatic increase in cost.
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